

Weather Modification Benefit Cost Analysis and a Look into the 2015 Weather Pattern

JONATHAN A. JENNINGS

Meteorologist, West Texas Weather Modification Association

San Angelo, Texas

Groundwater Management #7 Groundwater Symposium – 18 April 2015 – San Angelo, TEXAS

What to Expect

- Target Areas of the WTWMA/TWMA
- Quick Background on Weather Modification
 - Who, what, when, where and why?
- Analysis
- Benefit-Cost Analysis
- A look into the rest of 2015

Target Areas

West Texas Weather Modification Association Target Area

Texas Weather Modification Association Program Target Areas

Why Modify the Weather?

- Demand for water increases while the supply decreases
- Clouds in Texas are very vulnerable to particulates, especially those in West Texas
 - Impacts from dust, smoke, sulfates and other small aerosols
- Texas is very susceptible to drought
- ENSO conditions impact Texas more so than any other state in terms of changing weather patterns
 - La Nina
 - El Nino

Program Goals

- Help increase water supply for:
 - Drinking water
 - Irrigation
 - Area Lakes, Rivers and Reservoirs
 - Aquifer Recharge
- While reducing:
 - Need to irrigate
 - Groundwater Consumption

Methodology

- Base Seeding via aircraft using two different types of flares
 - Glaciogenic Flares (Silver Iodide)
 - Hygroscopic Flares (Calcium Chloride)
- Flares are similar to roadside flares.
 - Burn in place (BIP)
 - Particles volatilize reforming to the sizes/distributions favorable for seeding

Methodology

- Storms must be convective in nature
 - 1. to ensure the possibility of super cooled water
 - 2. to ensure the chances of strong enough inflow reliable enough to transport material
- Rely on inflow at the cloud base to transport material into the cloud
- Must have "VFR" flight conditions
 - Allows us to target clouds on an asneed basis

Example

- 28 April 2013
- Forecast models suggested scattered showers north of a line from San Angelo to Big Lake
- Areas further south were expected to be dry
- Cloud bases near 12,000 feet, ICA values strongly positive indicating very "sick" clouds
- Hygroscopic Seeding was aggressively used, along with some dual-seeding as clouds grew vertically

Example (28 April 2013)

Analysis for the WTWMA

■ Small ■ Large ■ Type-B ■ Total

Analysis for the TWMA

Increase Found for TWMA Seeding Operations (2004-2014)

■ Small ■ Large ■ Type-B ■ Total

9 Year Analysis on Small Clouds

Credit: Dr. Arquimedes Ruiz-Columbiè, TTU

Precipitation Analysis

- Percent of Normal rainfall was compared within the target area to areas outside of the target area.
- Weather Modification began in West Texas in 1996 (first operational year)
- In 2004, meteorologist began using high resolution radar data. Therefore I have called the 2004-2012 the "modern era" of weather modification

Outside vs. Inside of the Target Area

Target Area versus Outside (West)

Target Area versus Outside (North)

Target Area versus Outside (East)

Aquifer Recharge

- Studies done by Green and Bertettie of the Southwest Research Institute indicate 16.5" of precipitation annually is needed for aquifer recharger across the Edwards-Trinity Aquifer
- Weather Modification could be the difference between seeing or not seeing recharge in a given time period
- An important benefit received from Weather Modification as additional rainfall is the only way to increase recharge

Texas Can be Sub-Divided by Area into Three Categories of Recharge

Source: Green, Bertettie, Southwest Research Institute (2010)

The impacts of Weather Modification on Recharge in West Texas

- The annual precipitation increase from weather modification was taken away from the annual rainfall.
- This allowed for a difference of recharge to be calculated. Then...
- Using:

R = 0.15(P-16.50)

- The amount of Recharge due to weather modification can be calculated
 - County by county, year by year.

The impacts of Weather Modification on Recharge in West Texas

• Once recharge was found the Thornthwaite equation for Potential Evapotranspiration

$$\mathsf{PET} = 16 \left(\frac{L}{12}\right) \left(\frac{N}{30}\right) \left(\frac{10T_{\alpha}}{5}\right)^{\alpha}$$

Where L = average day length of moth

- Where N = number of days in each month
- Where Ta = Average Daily Temperature of the month being calculated
- Where a = $(6.75 \times 10^{-7})|^3 (7.71 \times 10^{-5})|^2 + (1.792 \times 10^{-2})| + 0.49239$

Where I = $\sum_{I=1}^{12} \left(\frac{Ta}{5}\right)^{1.514}$

The impacts of Weather Modification on Recharge in West Texas

- Estimated Recharge across the WTWMA target area over the last 9 years is:
 - 1 million acre-feet
 - Or ~100k acre-feet per year
- Nearly 10% of increases from weather modification in West Texas is expected to recharge into area aquifers

Annual Recharge across the WTWMA Target Area due to Rain Enhancement

Benefit Cost Analysis (Johnson 2014)

• Benefits Include

- Increased Ag Production
- Decreased surface and groundwater consumption
- Improved Opportunities for Economic Stability and Future Growth
- Enhanced Landscape Appearance
- Increased Reservoir Levels
- Replenishment of Aquifers
- Improved Habitat Conditions for Wildlife
- Increased Lake and River Levels
- Fire Suppression

Not all benefits cut and dry

- Some benefits are difficult to quantify and are subjective
- However, increased ag production, reductions in irrigation activity and resulting economic impact can be objectively calculated.
 - These are the benefits analyzed in this study which leaves plenty of room for additional benefits
 - Especially in terms of groundwater recharge, lake/river/reservoir replenishment

Impact of additional rainfall to dryland crop acreage...

- Four predominate agricultural commodities within the 31 county study area:
 - Corn
 - Wheat
 - Sorghum
 - Cotton

For the WTWMA Target Area

County	Increased Dryland Revenues	
Crockett	\$2,371	
Glasscock	\$2,084,673	
Irion	\$6,641	
Reagan	\$727,440	
Schleicher	\$436,032	
Sterling	\$30,365	
Sutton	\$4,896	
Tom Green*	\$1,378,197	
TOTAL	\$4,651,015	

*totals for Tom Green County only account for 45% of the county (roughly the area covered by the WTWMA target area)

Impact of additional rainfall to irrigated crop acreage

- Across the 31 county study area, one additional inch during the Mar-Oct period would result in saving 38,592 acre-feet, or 463,107 acreinches, of water
- Irrigation Cost across the study area range from \$3.30 to \$7.00 per acre-inch.

For the WTWMA Target Area

County	Cost Savings to Irrigated Acreage	
Crockett	\$0	
Glasscock	\$86,943	
Irion	\$79	
Reagan	\$35,932	
Schleicher	\$3,161	
Sterling	\$2,603	
Sutton	\$831	
Tom Green*	\$122,163	
TOTAL	\$251,712	

*totals for Tom Green County only account for 45% of the county (roughly the area covered by the WTWMA target area)

Impact of additional rainfall to increased grazing land revenues

- The 31 county target area supports:
 - 1.06 million head of beef cows
 - 184k goats
 - 221k sheep
- Increased moisture = increased grazing forages
 - Would lead to increased stocking rates, higher daily gain rates for livestock, improved body condition scores for females leading to improved fertility, and/or heavier weaning/sale weights

For the WTWMA Target Area

County	Increased Grazing Land Revenues	
Crockett	\$305,216	
Glasscock	\$73,275	
Irion	\$90,767	
Reagan	\$119,362	
Schleicher	\$160,019	
Sterling	\$114,526	
Sutton	\$185,280	
Tom Green*	\$65,695	
TOTAL	\$1,114,139	

*totals for Tom Green County only account for 45% of the county (roughly the area covered by the WTWMA target area)

Total of Benefits Analyzed

County	Dryland Crop	Irrigation Savings	Increased Grazing Land	DIRECT EI
Crockett	\$2,371	\$0	\$305,216	\$307,587
Glasscock	\$2,084,673	\$86,943	\$73,275	\$2,244,891
Irion	\$6,641	\$79	\$90,767	\$97,486
Reagan	\$727,440	\$35,932	\$119,362	\$882,733
Schleicher	\$436,032	\$3,161	\$160,019	\$579,212
Sterling	\$30,365	\$2,603	\$114,526	\$147,894
Sutton	\$4,896	\$831	\$185,280	\$191,007
Tom Green*	\$1,378,197	\$122,163	\$65,695	\$1,566,055
TOTAL	\$4,651,015	\$251,712	\$1,114,139	\$6,016,866

*totals for Tom Green County only account for 45% of the county (roughly the area covered by the WTWMA target area)

Benefits Cont.

- Benefits are not felt only at the local level, but also at a statewide level.
- Impact Analysis for Planning (IMPLAN) output multipliers were used for certain commodities/benefits to estimate the statewide impact
- Multipliers not used for irrigation savings
 - See report for specific multipliers used

Statewide Economic Impact

County	Direct Economic Impact	Statewide Economic Impact
Crockett	\$307,587	\$691,373
Glasscock	\$2,244,891	\$4,750,952
Irion	\$97,486	\$218,070
Reagan	\$882,733	\$1,867,927
Schleicher	\$579,212	\$1,258,655
Sterling	\$147,894	\$322,374
Sutton	\$191,007	\$427,508
Tom Green*	\$1,566,055	\$3,220,707
TOTAL	\$6,016,866	\$12,757,566

*totals for Tom Green County only account for 45% of the county (roughly the area covered by the WTWMA target area)

Benefit-Cost Ratio

- Using the expenses of the program over the last 5 years and comparing that of the benefits described, the ratio is:
 - Direct Economic Impact: 1:16
 - Statewide Impact: 1:34
 - For every dollar being put into the WTWMA, \$16-\$34 dollars is returned assuming one inch of additional rainfall is produced

Comparisons to Other Programs

PROGRAM	Direct El	Statewide EI	Benefit Cost Ratio (D)	Benefit Cost Ratio (S)
WTWMA	\$6,016,866	\$12,757,566	1:16	1:34
STWMA**	\$5,691,327	\$10,850,560	1:21	1:39
PGCD	\$4,877,938	\$9,407,140	1:22	1:43
All Combined	\$16,586,131	\$33,015,266	1:19	1:38

Data for SWTREA not added here due to inconsistent target area size and operating years, however, the ratios are as follows: 2009 through 2011 – 1:9, 1:18, 2012 – 1:7, 1:14

Of the 31 counties analyzed:

- Tom Green, Glasscock and Carson Counties are the top 3 in increased revenue from dryland crops from weather modification.
- Carson, Uvalde and Tom Green Counties are the top 3 in savings from irrigation due to weather modification.
- Webb, Crockett and Medina are the top 3 in increases from grazing land due to weather modification.
- Overall, the top three counties receiving benefits from weather modification are:
 - Tom Green
 - Glasscock
 - Carson

What is NOT included?

- Recharge Enhancement
 - Jennings, Green 2014 found \$100,000 a-f/year of enhanced recharge due to weather modification over the last 10 years
- Enhanced Spring/River Flow
 - Leads to better wildlife management and lake/reservoir runoff
- These are areas that should be studied in the future. Some ideas have already in the works.

2015 Outlook

- Has been a rather wet spring
 - Precipitation (through MARCH) totals across the region have been pretty solid
- Top 5 (within WTWMA target area)
 - San Angelo 7NW 6.16"
 - Mertzon 6.01"
 - Sterling City 5.65", 5.62"
 - Sonora Average 5.34"
 - Ozona 32SW 5.01
- Bottom 3 (excluding those with missing data)
 - Barnhart 2.75"
 - Ozona 15SSW 3.76"
 - Eldorado 3.83"

2015 Outlook

- Generally, wet springs correlate to wet summer/falls
 - The correlation is weak (0.33), but it is there.
 - During El Nino Years, the Average 1st QTR precipitation at SJT is 3.65"
 - This year, we have totaled up 3.97" so far.
 - During these same El Nino years, the average annual precipitation for SJT is 22.28"
 - Almost a safe bet to expect 1-2" of above average rainfall this year.

ENSO Outlook

• ENSO conditions continue to not only stay in an El Nino, but strengthen. This should translate to continued above normal precipitation

NCEP CFSv2 Precipitation [inch] Monthly Mean Forecast Departure 4x Daily Forecast Runs Averaged from: 00Z15MAR2015 --> 18Z13APR2015 -- Last 30 days Target Month: MAY 2015

Precipitation (shaded) —— Monthly Average Departure NCEP CFSv2 384x190 Surface Flux Thinned Gaussian Forecast Grid

NCEP CFSv2 Precipitation [inch] Monthly Mean Forecast Departure 4x Daily Forecast Runs Averaged from: 00Z15MAR2015 --> 18Z13APR2015 -- Last 30 days Target Month: JULY 2015

Precipitation (shaded) —— Monthly Average Departure NCEP CFSv2 384x190 Surface Flux Thinned Gaussian Forecast Grid

4x Daily Forecast Runs Averaged from: 00Z15MAR2015 --> 18Z13APR2015 -- Last 30 days Target Month: JUNE 2015

Precipitation (shaded) —— Monthly Average Departure NCEP CFSv2 384x190 Surface Flux Thinned Gaussian Forecast Grid

1.5 0.5 0.25 -0.25 -0.5

> -2.5 -3 -3.5

-5.5 -6.5 -7.5 -8

> 0.5 0.25 -0.25 -0.5

-2.5 -3 -3.5 -4.5 -5.5 -6.5 -7 -7.5

NCEP CFSv2 Precipitation [inch] Monthly Mean Forecast Departure 4x Daily Forecast Runs Averaged from: 00Z15MAR2015 --> 18Z13APR2015 --- Last 30 days Target Month: AUGUST 2015

Precipitation (shaded) —— Monthly Average Departure NCEP CFSv2 384x190 Surface Flux Thinned Gaussian Forecast Grid

NCEP CFSv2 Precipitation [inch] Monthly Mean Forecast Departure 4x Daily Forecast Runs Averaged from: 00Z15MAR2015 --> 18Z13APR2015 --- Last 30 days Target Month: SEPTEMBER 2015

Precipitation (shaded) —— Monthly Average Departure NCEP CFSv2 384x190 Surface Flux Thinned Gaussian Forecast Grid

NCEP CFSv2 Precipitation [inch] Monthly Mean Forecast Departure 4x Daily Forecast Runs Averaged from: 00Z15MAR2015 ---> 18Z13APR2015 --- Last 30 days Target Month: NOVEMBER 2015

Precipitation (shaded) —— Monthly Average Departure NCEP CFSv2 384x190 Surface Flux Thinned Gaussian Forecast Grid

NCEP CFSv2 Precipitation [inch] Monthly Mean Forecast Departure 4x Daily Forecast Runs Averaged from: 00Z15MAR2015 --> 18Z13APR2015 -- Last 30 days Target Month: OCTOBER 2015

Precipitation (shaded) —— Monthly Average Departure NCEP CFSv2 384x190 Surface Flux Thinned Gaussian Forecast Grid

0.25 -0.25

-0.5

-1.5 -2 -2.5 -3 -3.5 -4.5 -5 -5.5 -6 -6.5 -7 -7.5 -8

0.25 -0.25 -0.5 -1.5 -2.5 -3 -3.5 -4.5 -5.5 -6 -6.5 -7 -7.5 -8

NCEP CFSv2 Precipitation [inch] Monthly Mean Forecast Departure 4x Daily Forecast Runs Averaged from: 00Z15MAR2015 --> 18Z13APR2015 -- Last 30 days Target Month: DECEMBER 2015

Precipitation (shaded) —— Monthly Average Departure NCEP CFSv2 384x190 Surface Flux Thinned Gaussian Forecast Grid

- The trends are looking good.
 - The previous models were 30 day average runs, however, when the latest, most recent runs were analyzed, the precipitation anomalies are even stronger
- My original forecast of 20-25" continues to look good, but a few heavy rain makers can really skew the totals and push a few folks over the 30" mark by the end of the year.
- I think we have a better chance of exceeding 30" before not reaching 20".

Contraction of the second

Jonathan A. Jennings

meteorologist@wtwma.com
http://www.wtwma.com (under construction)
http://www.texasweathermodification.com